

Feb 19-8:47 AM

Mean - Value Theorem

1) $f(x)$ is cont. on $[a, b]$
2) $f(x)$ is diff. on $(a, b)$
then there is a number $c$ in $(a, b)$
Such that $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
MUT for integration
If $f(x)$ is cont. on $[a, b]$, there is
at least a number $C$ in $[a, b]$ Such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

$f(x)=x^{2}$ on $\left.[1,4] \quad \mapsto \frac{x^{3}}{3}\right|_{1} ^{4}=3 c^{2}$
$\begin{array}{ll}\int_{1}^{4} f(x) d x=f(c)(4-1) & \frac{1}{3}\left(4^{3}-1^{3}\right)=3 c^{2} \\ \int_{1}^{4} x^{2} d x=c^{2} \cdot 3 & \frac{63}{3}=3 c^{2} \\ c^{2}=7 & \rightarrow c=\sqrt{7} \\ & G[1,4]\end{array}$

$$
\begin{aligned}
& f(x)=x^{2}-2 x,[1,3] \\
& \text { cont. everywhere } \\
& \int_{1}^{3}\left(x^{2}-2 x\right) d x=\left(c^{2}-2 c\right)(3-1) \\
& \left.\left(\frac{x^{3}}{3}-x^{2}\right)\right|_{1} ^{3}=2\left(c^{2}-2 c\right) \\
& \left(\frac{3^{3}}{3}-3^{20}\right)-\left(\frac{x^{3}}{3}-1^{2}\right)=2\left(c^{2}-2 c\right) \\
& \frac{2}{3}=2\left(c^{2}-2 c\right) / P c-1= \pm \sqrt{\frac{4}{3}} \\
& c=1 \pm \frac{2}{\sqrt{3}} \\
& c^{2}-2 c+1=\frac{1}{3}+1 \quad c=1 \pm 1.2 \\
& (c-1)^{2}=\frac{4}{3} \quad[c=2.2 \text { or } c=-.2
\end{aligned}
$$

Nov 30-10:33 AM

$$
\begin{aligned}
& \text { If } f(x) \text { is integrable on }[a, b] \text {, then } \\
& \text { the average value (mean Value) of } f(x) \text { on }[a, b] \\
& \text { is } f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& f(x)=\sqrt{x}, \quad[4,9] \\
& f_{\text {ave }}=\frac{1}{9-4} \int_{4}^{9} \sqrt{x} d x=\frac{1}{5} \int_{4}^{9} x^{1 / 2} d x \\
& =\left.\frac{1}{5} \cdot \frac{x^{3 / 2}}{3 / 2}\right|_{4} ^{9}=\left.\frac{2}{15} \cdot x \sqrt{x}\right|_{4} ^{9} \\
& =\frac{2}{15}[9 \sqrt{9}-4 \sqrt{4}] \\
& =\frac{2}{15}[27-8]=\frac{38}{15}
\end{aligned}
$$

$\qquad$

$$
\begin{aligned}
& \text { + } \\
& =\frac{-1}{2 \pi}(0)=0
\end{aligned}
$$

Nov 30-10:43 AM

$$
\left.\begin{array}{l}
\text { Sind fave for } \frac{f(x)=\operatorname{Sec}^{2} x}{\text { Integrable }} \text { on }\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] . \\
{\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]}
\end{array} \quad \begin{array}{rl}
f_{\text {ave }}=\frac{1}{\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)} \int_{-\frac{\pi}{4}}^{\pi / 4} \operatorname{Sec}^{2} x d x & =\left.\frac{1}{\frac{\pi}{2}} \cdot \tan x\right|_{-\frac{\pi}{4}} ^{\pi / 4} \\
& =\frac{2}{\pi}\left[\tan \frac{\pi}{4}-\tan \left(-\frac{\pi}{4}\right)\right] \\
& =\frac{2}{\pi}[1-(-1)]=\frac{4}{\pi}
\end{array}\right] .
$$

$$
\begin{aligned}
\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(t) d t\right] & =f(v(x)) \cdot v^{\prime}(x)-f(u(x)) \cdot u^{\prime}(x) \\
\frac{d}{d x}\left[\int_{x}^{x^{2}} \frac{1}{t} d t\right] & =\frac{1}{x^{2}} \cdot 2 x-\frac{1}{x} \cdot 1 \\
& =\frac{2}{x}-\frac{1}{x}=\left[\frac{1}{x}\right] \\
\left.\frac{d}{d x}\left[\int_{4}^{\sin x} \frac{1 x}{1+t^{2}}\right] d t\right] & =\frac{1}{1+\sin ^{2} x} \cdot \cos x-\frac{1}{1+4^{2}} \cdot 0 \\
& =\frac{\cos x}{1+\sin ^{2} x}
\end{aligned}
$$

Nov 30-10:53 AM

$$
F(x)=\int_{2}^{x}\left(\sqrt{3 t^{2}+1} d t\right.
$$

Evaluate $F(2)=\int_{2}^{2} \sqrt{3 t^{2}+1} d t=0$
Evaluate $F^{\prime}(2) \quad F^{\prime}(x)=\sqrt{3 x^{2}+1} \cdot 1-\sqrt{3.2^{2}+1} \cdot 0$
$f^{\prime}(x)=\sqrt{3 x^{2}+1}$
$f^{\prime}(2)=\sqrt{3 \cdot 2^{2}+1}=\sqrt{13}$

Prove $F(x)=\left\{\begin{array}{c}{[x]\left[\frac{7}{[3 x}\right]} \\ t\end{array}\right] d t$ is constant on $(0, \infty)$.

$$
\begin{gathered}
\frac{d}{d x}[\text { Constant }]=0 \quad \text { If we show } \\
F^{\prime}(x)=\frac{1}{x x} \cdot x-\frac{1}{x} \cdot 1 \\
=\frac{1}{x}-\frac{1}{x}=0
\end{gathered}
$$

Nov 30-11:03 AM

$$
\begin{aligned}
& \text { Evaluate } \int_{0}^{1} \sqrt[5]{1-2 x} d x \quad \begin{array}{l}
\text { Hint: } u=1-2 x \\
d u=-2 d x
\end{array} \\
& \int_{1}^{-1} \sqrt[5]{u} \frac{d u}{-2} \quad \frac{1}{5}+1=\frac{6}{5} \quad \frac{d u}{-2}=d x \\
& =\frac{-1}{2} \int_{1}^{-1} u^{1 / 5} d u=\left.\frac{-1}{2} \cdot \frac{u^{\frac{6}{5}}}{\frac{6}{5}}\right|_{1} ^{-1} \quad x=1 \rightarrow u=-1 \\
& =\left.\frac{-5}{12} u \sqrt[5]{u}\right|_{1} ^{-1} \\
& =\frac{-5}{12}[-\sqrt[5]{-1}-1 \sqrt[5]{1}]=\frac{-5}{12}[1-1]=0 \\
& \int_{a}^{a} f(x) d x=0 \quad \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Evaluate } \\
\int_{0}^{-3} \frac{x}{\sqrt{x^{2}+16}} d x & \begin{array}{l}
\text { Hint let } u=x^{2}+16 \\
d u
\end{array} \\
\int_{16}^{25} \frac{1}{\sqrt{u}} \frac{d u}{2} & \frac{d u}{2}=x d x \\
=\frac{1}{2} \int_{16}^{25} u^{-1 / 2} d u & x=0 \rightarrow u=16 \\
=\left.\frac{1}{2} \cdot \frac{u^{1 / 2}}{1 / 2}\right|_{16} ^{25}=\left.\sqrt{u}\right|_{16} ^{25}=\sqrt{25}-\sqrt{16}=5-4 \\
& =1
\end{array}
\end{array}
$$

Nov 30-11:16 AM

$$
\begin{array}{ll}
\text { Find } \int \frac{\cot ^{2} x}{\sin ^{2} x} d x & \cot x=\frac{\cos x}{\sin x} \\
=\int \frac{\cos ^{2} x}{\sin ^{4} x} d x & \frac{\cot ^{2} x}{\sin ^{2} x} \cdot \frac{\frac{\cos ^{2} x}{\sin ^{2} x}}{\sin ^{2} x} \\
=\int \frac{\cos ^{2} x}{\sin ^{2} x} \cdot \frac{1}{\sin ^{2} x} d x & \frac{\cos ^{2} x}{\sin ^{4} x} \\
=\int\left(\cot ^{2} x \cdot \csc ^{2} x d x\right. & \frac{d}{d x}[\cot x]=-\csc ^{2} x \\
\text { Let } u=\cot x & \frac{d}{d x}[\tan x]=\sec ^{2} x \\
d u=-\csc ^{2} x d x & C=-\frac{-1}{3} \cot ^{3} x+C \\
=\int u^{2} \cdot-d u=-\int u^{2} d u=-\frac{u^{3}}{3}+C
\end{array}
$$

